

WEEKLY TEST TYM-02 TEST 18 RAJPUR ROAD SOLUTION Date 22-12-2019

[PHYSICS]

2. (a)
$$\omega = \sqrt{\frac{\text{Acceleration}}{\text{Displacement}}} = \sqrt{\frac{2.0}{0.02}} = 10 \text{ rad s}^{-1}$$

- **3.** (b) From given equation $\omega = 3000$, $\Rightarrow n = \frac{\omega}{2\pi} = \frac{3000}{2\pi}$
- **4.** (b
- **5.** (b) Given, $v = \pi \, cm/\sec$, $x = 1 \, cm$ and $\omega = \pi s^{-1}$ using $v = \omega \sqrt{a^2 x^2} \Rightarrow \pi = \pi \sqrt{a^2 1}$ $\Rightarrow 1 = a^2 1 \Rightarrow a = \sqrt{2} \, cm$.
- **6.** (b) Length of the line = Distance between extreme positions of oscillation = 4 cmSo, Amplitude a = 2 cm.

also
$$v_{\text{max}} = 12 \, \text{cm/s}$$
.

$$v_{\text{max}} = \omega a = \frac{2\pi}{T} a$$

$$\Rightarrow T = \frac{2\pi a}{T} = \frac{2 \times 3.14 \times 2}{12} = 1.047 \text{ sec}$$

7. (c)
$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow T \propto \sqrt{l}$$

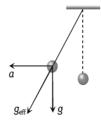
- **8.** (b) When a little mercury is drained off, the position of *c.g.* of ball falls (*w.r.t.* fixed and) so that effective length of pendulum increases hence *T* increase.
- **9.** (b) Initially time period was $T = 2\pi \sqrt{\frac{l}{g}}$

When train accelerates, the effective value of *g* becomes

$$\sqrt{(g^2+a^2)}$$
 which is greater

than q

Hence, new time period, becomes less than the initial time period.



10. (b) As we know $g = \frac{GM}{R^2}$ $\Rightarrow \frac{g_{\text{earth}}}{g_{\text{planet}}} = \frac{M_e}{M_p} \times \frac{R_\rho^2}{R_e^2} \Rightarrow \frac{g_e}{g_p} = \frac{2}{1}$

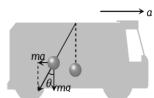
Also
$$T \propto \frac{1}{\sqrt{g}} \Rightarrow \frac{T_e}{T_p} = \sqrt{\frac{g_p}{g_e}} \Rightarrow \frac{2}{T_p} = \sqrt{\frac{1}{2}}$$

 $\Rightarrow T_p = 2\sqrt{2} \text{ sec}$.

11. (b) In accelerated frame of reference, a fictitious force (pseudo force) ma acts on the bob of

pendulum as shown in figure. Hence,

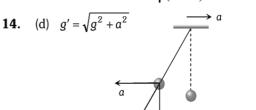
 $\tan \theta = \frac{ma}{m\sigma} = \frac{a}{\sigma}$



$$\Rightarrow \theta = \tan^{-1} \left(\frac{a}{g} \right)$$
 in the backward direction.

- **12.** (c) $T = 2\pi \sqrt{\frac{1}{g}}$ (Independent of mass)
- 13. (c) In stationary lift $T = 2\pi \sqrt{\frac{l}{g}}$ In upward moving lift $T' = 2\pi \sqrt{\frac{l}{(g+a)}}$

(a = Acceleration of lift) $\Rightarrow \frac{T'}{T} = \sqrt{\frac{g}{g+a}} = \sqrt{\frac{g}{\left(g+\frac{g}{4}\right)}} = \sqrt{\frac{4}{5}} \Rightarrow T' = \frac{2T}{\sqrt{5}}$



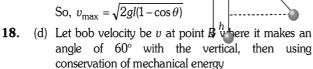
- **15.** (d) $T \propto \sqrt{l} \Rightarrow \frac{\Delta T}{T} \neq \frac{1}{2} \frac{\lambda l}{l} = \frac{0.02}{2} = 0.01 \Rightarrow \Delta T = 0.01T$ Loss of time per day $= 0.01 \times 24 \times 60 \times 60$ $= 864 \sec$
- **16.** (b) At *B*, the velocity is maximum using conservation of mechanical energy $\Delta PE = \Delta KE \implies mgH = \frac{1}{2}mv^2 \implies v = \sqrt{2gH}$
- **17.** (c) If suppose bob rises up to a height *h* as shown then after releasing potential energy at extreme position becomes kinetic energy of mean position

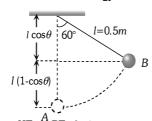
$$\Rightarrow mgh = \frac{1}{2}mv_{\max}^2 \Rightarrow v_{\max} = \sqrt{2gh}$$

Also, from figure
$$\cos \theta = \frac{l-h}{l}$$

$$\Rightarrow h = l(1 - \cos \theta)$$

So,
$$v_{\text{max}} = \sqrt{2gl(1-\cos\theta)}$$





$$KE_A + PE_A = KE_B + P\overline{E}_{\overline{B}} 3m/sec$$

$$\Rightarrow \frac{1}{2} m \times 3^2 = \frac{1}{2} mv^2 + mgl(1 - \cos\theta)$$

$$\Rightarrow 9 = v^2 + 2 \times 10 \times 0.5 \times \frac{1}{2} \Rightarrow v = 2 \, m/s$$

19. (a) If initial length $l_1 = 100$ then $l_2 = 121$

By using
$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow \frac{T_1}{T_2} = \sqrt{\frac{l_1}{l_2}}$$

Hence,
$$\frac{T_1}{T_2} = \sqrt{\frac{100}{121}} \Rightarrow T_2 = 1.1T_1$$

% increase =
$$\frac{T_2 - T_1}{T_1} \times 100 = 10\%$$

20. (c)
$$T = 2\pi\sqrt{1/g} = 2\pi\sqrt{\frac{1}{\pi^2}} = 2 \sec \theta$$

[CHEMISTRY]

21. (a)
$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

$$\frac{2 \times 60}{100} \frac{2 \times 40}{100} \frac{2 \times 40}{100}$$

Volume of container = 2 litre.

$$K_c = \frac{\frac{2 \times 40}{100 \times 2} \times \frac{2 \times 40}{100 \times 2}}{\frac{2 \times 60}{100 \times 2}} = 0.266.$$

22. (d) $\Delta n = 1$ for this change

So the equilibrium constant depends on the unit of concentration.

23. (c)
$$K = \frac{[NO_2]^2}{[N_2O_4]} = \frac{\left[2 \times \frac{10^{-3}}{2}\right]^2}{\left[\frac{.2}{2}\right]} = \frac{10^{-6}}{10^{-1}} = 10^{-5}$$
.

24. (b) For
$$A + B \rightleftharpoons C + D$$

$$K = \frac{[C][D]}{[A][B]} = \frac{0.4 \times 1}{0.5 \times 0.8} = 1.$$

25. (a)
$$K = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

27. (d)
$$A + B = C + D$$

 $x \quad x \quad 0 \quad 0$
 $2x \quad 2x$
 $K_c = \frac{[C][D]}{[A][B]} = \frac{2x \cdot 2x}{x \cdot x} = 4$

28. (d)
$$N_2O_4 \rightleftharpoons 2NO_2$$

total mole at equilibrium = $(1-\alpha) + 2\alpha = 1 + \alpha$

29. (b)
$$K = \frac{[C_2H_6]}{[C_2H_4][H_2]} = \frac{[mole/litre]}{[mole/litre][mole/litre]}$$

= $litre/mole$. or litre mole⁻¹.

31. (b)
$$K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{(28)^2}{8 \times 3} = 32.66$$

32. (a)
$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}; \qquad \Delta n = 2 - 2 = 0$$

33. (b) The rate of forward reaction is two times that of reverse reaction at a given temperature and identical concentration $K_{\text{equilibrium}}$ is 2 because the reaction is reversible. So $K = \frac{K_1}{K_2} = \frac{2}{1} = 2$.

35. (b)
$$K_c = \frac{K_f}{K_b} :: K_b = \frac{K_f}{K_c} = \frac{10^5}{100} = 10^3$$

37. (d)
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

For $1dm^3 R = k[SO_2]^2[O_2]$

$$R = K \left[\frac{1}{T} \right]^2 \left[\frac{1}{1} \right] = 1$$

For
$$2dm^3$$
 $R = K \left[\frac{1}{2} \right]^2 \left[\frac{1}{2} \right] = \frac{1}{8}$

So, the ratio is 8:1

38. (d)
$$K = \frac{[C][D]}{[A][B]} = \frac{\frac{1}{3} \times \frac{1}{3}}{\frac{2}{3} \times \frac{2}{3}} = \frac{1}{4} = 0.25$$

So,
$$K = 0.25$$

39. (d)
$$H_2 + I_2 \Rightarrow 0.4 \\ 0.4 - 0.25 = 0.15$$
 $0.4 - 0.25 = 0.15/2$ $2HI$ 0.50 $0.50/2$

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} = \frac{\left[\frac{0.5}{2}\right]^{2}}{\left[\frac{0.15}{2}\right]\left[\frac{0.15}{2}\right]} = \frac{0.5 \times 0.5}{0.15 \times 0.15} = 11.11$$
The apprilibetive approximate decrease the constant of the second of the constant of the const

40. (c) The equilibrium constant does not change when concentration of reactant is changed as the concentration of product also get changed accordingly.